Thursday, December 9, 2010

The Coming Data Center Singularity: How Fabric Computing Must Evolve


Summary:
The next generation in data center structure will be fabric-based computing, but the fabric will be two full steps beyond today’s primitive versions. First, the fabric will include network switching and protection capabilities embedded within. Second, the fabric will incorporate full energy management capabilities: electric power in, and heat out.
Hypothesis:
Ray Kurzweil describes the Singularity as that moment when the ongoing increase in information and related technologies provides so much information that the sheer magnitude of it overwhelms traditional human mental and physical capacity. Moore’s law predicts this ongoing doubling of the volume of available computing power, data storage, and network bandwidth, at constant cost. There will come a time when the volume of information suddenly present will overwhelm our capacity to comprehend it. In Dr. Kurzweil’s utopian vision, humanity will transcend biology and enter into a new mode of being (which has resonances with Pierre Teilhard de Chardin’s Noosphere).
Data centers will face a similar disruption, but rather sooner than Dr. Kurzweil’s 2029 prediction. Within the next ten years, data centers will be overwhelmed. Current design principles rely on distinct cabling systems for power and information. As processors, storage, and networks all increase capacity exponentially (at constant cost) the demands for power and the need for connectivity will create a rat’s nest of cabling, compounded with ever-increasing requirements for heat dissipation technology.
There will be occasional reductions in power consumption and physical cable density, but these will not avoid the ultimate catastrophe, only defer it for a year or two. Intel’s Nehalem chip technology is both denser and less power-hungry than its predecessor, but such improvements are infrequent. The overall trend is towards more connections, more electricity, more heat, and less space. These trends proceed exponentially, not linearly, and in an instant our data center capacity will run out.
Steady investment in incremental improvements to data center design will be overrun by this deluge of information, connectivity, and power density. Organizations will freeze in place as escalating volumes of data overwhelm traditional configurations of storage, processors, and network connections.
The only apparent solution to this singularity is a radical re-think of data center design. As power and network cabling are the symptoms of the problem, an organizational layout that eliminated these complexities would defer, if not completely bypass, the problem. By embedding connectivity, power, and heat (collectively called energy management) in the framework itself, vendors will deliver increasingly massive compute capabilities in horizontally-extensible units – be they blades, racks, or containers.
Conclusion:
The next generation in data center structure will be fabric-based computing, but the fabric will be two full steps beyond today’s primitive versions. First, the fabric will include network switching and protection capabilities embedded within. Second, the fabric will incorporate full energy management capabilities: electric power in, and heat out. 

No comments: